Virtual reality is central to aviation and maritime training

What is often seen as a novelty in many domains has in fact been used for decades

By Morand Fachot

Virtual reality is increasingly making the headlines, thanks mainly to the gaming community, but it started finding its way in a wide range of domains a long time ago. Virtual reality has been around for decades, one of its earlier applications being the training of aircraft pilots in rather basic mechanical installations. It is now widely used in the aviation and maritime sectors to form crews. Many of the systems set up in the very complex training installations in use today rely on a number of IEC International Standards for their operations.

CAE Airbus A350 XWB full-flight simulator
Pilots being trained on CAE Airbus A350 XWB full-flight simulator (Photo: CAE)

Not that recent

The perception of three-dimensional depth of space to create a form of virtual reality has been familiar for a long time. It was used widely between the two World Wars and later on in toys and devices such as projectors and stereoscopes to give viewers looking at two photos taken from different angles the impression of seeing a scene or a landscape in three dimensions.

Beyond the visual dimension what could arguably be described as the first "serious" virtual reality application was developed in the form of flight simulators to train airmen.

Following trials with purely mechanical and very basic contraptions introduced in the 1910s, what can be described as the first real flight simulator, the Link Trainer, was developed in the late 1920s. It looked like a toy aircraft with short wooden wings and fuselage and was fixed to a universal joint mounted on a platform which could be made to pitch and roll using bellows activated by an electric pump.

After a spate of air crashes by pilots not familiar with instrument flying, the US Army Air Corps initially bought six exemplars of Link Trainers, which were designed to train crews to fly by instruments only. During World War 2, some 500 000 US and allied pilots were trained on the ground in the basic skills of flying by using more than 10 000 Link Trainers, which became known as Blue Boxes, and were improved by using films and interactive controls to create virtual flying conditions.

The move towards electronic-assisted simulation

The first generation of flight simulators relied primarily on mechanical systems to give trainee pilots basic physical feedback from their actions through pitch and roll. A greater sense of reality was provided by the introduction of electronic systems in simulators to reproduce instrument panels' visual indications as well as sounds and motion.

In 1954 the US company United Airlines bought four flight simulators at a cost of USD 3 million. These machines, to which the nose of a real plane with all flight instruments was attached, are considered the first modern flight simulators for commercial aviation, although they were not installed on moving platforms.

Flight simulators have improved greatly over the years and are now very complex.

The International Civil Aviation Organization (ICAO), the UN specialized agency that codifies and regulates many aspects of civil aviation, published a Manual of Criteria for the Qualification of Flight Simulation Training Devices (ICAO 9625-1 4th edition, 2015).

These devices can be extremely costly, depending on their characteristics and certification class from the various aviation authorities. Flight training devices (FTDs), also known as fixed base simulators, can cost from a few hundred thousand dollars to a few million; full flight simulators (FFSs), or motion base simulators, cost anything from a few million dollars to dozens of millions.

British Airways is reported to have spent GBP 10 million (USD 14 million) on its newest simulator to train the pilots who will fly its Airbus A380 superjumbo aircraft. This may seem very expensive, but when the cost of flying an airliner (fuel, maintenance, crew) is taken into account (from USD 6 000 an hour for single-aisle airliners to upwards of USD 8 000 for wide body jets) flight simulators are a very cost-effective way of training crews through many stages in the long term.

All down to electrical and electronic systems

These devices rely nearly entirely on electrical and electronic systems for their operation.

A manufacturer, Axis, stresses that its FFS has a "6 DOF (degree of freedom) fully electric motion system without any other pneumatic or hydraulic support systems, with less maintenance than any other system in the industry". IEC TC 2: Rotating machinery, develops International Standards for electric motors.

Many other IEC Technical Committees (TCs), such as IEC TC 20: Electric cables, IEC TC 23: Electrical accessories and its Subcommittees (SCs); IEC TC 47: Semiconductor devices, and its SCs, or IEC TC 48: Electrical connectors and mechanical structures for electrical and electronic equipment, prepare International Standards for components installed in simulators.

From aviation to shipping

Simulators are not used to train aviation pilots alone but also, and increasingly, are used in the shipping industry to develop bridge officers, pilots, mechanics and other operatives.

Training for the latter sector relies heavily on computer-based virtual reality systems and simulation suites that reproduce locations and ask for reactions to commands from the bridge, as well as to emergency situations, such as simulated fires or collisions and to mechanical incidents. It is also used to train harbour crane operators for loading and unloading containers and to train other shore workers.

The equivalent level of equipment to the multimillion FFSs required in training aviation pilots is not always needed in the maritime sector, making it possible to have training facilities installed in educational establishments or on shore sites elsewhere.

IMO recommended practices include simulation and manned models

The International Maritime organization (IMO), the specialized UN agency with responsibility for the safety and security of shipping and the prevention of marine pollution by ships, supports training using simulation and manned models of ships. IMO Resolution A.960(23) states that "The training should include practical experience gained under the close supervision of experienced pilots. This practical experience gained on vessels under actual piloting conditions may be supplemented by simulation, both computer and manned model, classroom instruction, or other training methods".

Advanced practical training of engine room and ship-bridge crews and of pilots is carried out on simulators in special schools and in centres run by marine equipment manufacturers such as Kongsberg Maritime AS and Transas Marine International or professional associations like the French Pilots’ Syndicate for the Atlantic, Brittany and Overseas Simulator (SPSA)..

SPSA offers an interesting insight through the technical set up of its simulator which relies on computers and offers an impressive display system::

"Screen projection is the key element of the simulation process (...) Through the bridge portholes, the image is displayed by 13 beamers on a 280° panoramic screen, 18 ft high x 52,5 ft diameter [5,5 m x 16 m]. In addition, two short focal projectors display the rear view from the pilot house. Finally, four 3,3 ft [1 m] LCD screens have been placed on both sides of the bridge wings in order to optimize the simulation of berthing and departure operations".

In addition the installation has also a navigation bridge "installed just above the projectors and its dimensions are those of a medium-sized vessel bridge (…) It is equipped with all the navigational aids (...) and enables the monitoring of all kinds of vessels (...)".

Although the system has no moving part, it is so realistic that some users feel seasick, according to SPSA Director Vincent Le Gall.

Other centres make it possible for trainee pilots to get practical experience by steering electrically-powered model ships in a basin. One such facility in France, Port Revel, has a fleet of 11 1:25 scale ships, representing 20 vessels, and 5 radio-controlled tugs, which can manoeuvre on a 5 hectare [12 acre] stretch of water.

The ships are fitted out with all the conventional features found on board a real ship and have built-in software and adjustable engines that can reproduce diesel or turbine propulsion.

Simulation is also used to train maritime search and rescue and lifeboat crews, and for port operations.  

It will also prove useful in the not too distant future as the introduction of remotely-controlled unmanned ships is being considered. Steering these vessels from a distance will require skills honed in simulators and technologies applied in VR applications and installations very similar to the ones used for simulators.

No simulation without IEC International Standards!

A very important part of all simulator systems used to train pilots or ships crews, is played by the components that give trainees a sense of reality and sensorial, even physical, feedback, a kind of high-end virtual reality through animation and sounds, in addition to systems that reproduce motion.

IEC TC 100: Audio, video and multimedia systems and equipment, and its Technical Areas (TAs) develop International Standards for a wide range of equipment, such as projection, storage and sound systems destined to transmit images and sounds to displays or speakers.

IEC TC 110: Electronic display devices, prepares International Standards "in the field of electronic display devices and specific relevant components". Screens are used in many simulation systems and a wide range of displays are installed in instrument panels for FTDs, FFSs and marine navigation simulators.

Overall simulation systems for training civilian and armed services professionals in aviation, maritime and related shore operations rest on International Standards developed by many IEC TCs and SCs, working with specialized agencies like IMO or ICAO, the industry and other Standards Developing Organizations.  

CAE Airbus A350 XWB full-flight simulator Pilots being trained on CAE Airbus A350 XWB full-flight simulator (Photo: CAE)
Vessel simulator Kongsberg offshore vessel simulator (Photo: Kongsberg)
Link Blue Box devices US pilots training on Link Blue Box devices
Training on a simulator Port crane operator training on a simulator (Photo: Transas)
Land-based control centre for remote controlled ships Rolls-Royce vision of land-based control centre for remote controlled ships (Photo: Rolls-Royce plc)
 Port Revel ship handling training center Pilot training on a 1:25 scale container ship at Port Revel ship handling training center (Photo: Port Revel)